Burden of work and workload indicator-based staffing needs of public health midwives in the primary health care system in Sri Lanka

MDK De Silva*, NI Talagala, P Karthikeyan, MS Rubasinghe

1 Family Health Bureau, Ministry of Health, Sri Lanka; 2 Ministry of Health, Sri Lanka; 3 Lady Ridgeway Hospital, Sri Lanka

*Correspondence: dileepdenta@yahoo.com https://orcid.org/0000-0002-0706-2904
DOI: https://doi.org/10.4038/jccpsl.v26i3.8244

Received on 18 January 2020
Accepted on 17 June 2020

Abstract

Introduction: Sri Lanka has a well-established primary health care system in which the public health midwives (PHMs) play a pivotal role. Sri Lanka has a total of 7087 field PHMs. Many stakeholders and public health experts believe that full-time equivalents of existing PHMs in the system are not adequate for performing all the tasks assigned to them by various programmes. Furthermore, the country is now facing several added challenges such as rapidly ageing population and increased non-communicable diseases, which also expand the PHMs role. To date, a systematic assessment of PHMs’ workload-based staffing needs that consider traditional and newly emerging roles of PHMs has not been carried out.

Objectives: To define the current workload of field public health midwives in Sri Lanka and estimate their workload indicator-based staffing needs

Methods: This study used a Workload Indicators of Staffing Needs (WISN) methodology to estimate the PHMs’ staffing needs in Sri Lanka. The scope of work and workload components of PHMs were determined using a desk review and a consultative process. The workload and total interventions to be implemented by the PHMs were assessed using One Health Tool. Activity standards were set using a time motion study. Finally, WISN software was used to estimate the staffing requirements.

Results: The analysis of time requirements of various programs related interventions indicated that the major share of PHM's time is utilized by the maternal and new-born program (45%), childcare programs (45%) and nutrition care (7%). Study showed that at least one field PHM is required per 1878 population to meet the current service demands, implying that Sri Lanka needs further 4525 field PHMs to meet the current needs.

Conclusions: Currently, there is an acute shortage of field PHMs in Sri Lanka. The Ministry of Health should take steps to train more PHMs, in order to provide an optimum service.

Key words: public health midwife, Workload Indicators of Staffing Needs
Introduction

Sri Lanka has a unique preventive care system, in which a group of several types of primary care workers provide primary preventive and promotive care to families. This group, mainly comprising medical officers of health (MOHs), public health midwives (PHMs) and public health inspectors (PHIs) are attached to 343 MOH offices around the country. Around 7087 PHMs are employed in the field services in Sri Lanka. The success of this system has been well evident by the country's health indicators, such as low maternal mortality (33.8 per 100000 live births), neonatal mortality (5.6 per 1000 live births) and infant mortality (8 per 1000 live births) which are among the lowest figures in the Asian region (1).

Among primary care workers, the PHMs can be considered to play the most crucial role as the grass-root level contact for people and primarily responsible for providing maternal and childcare. Though PHMs were originally enrolled for the provision of maternal and childcare, their role has gradually broadened to include family planning, school health, well woman care, pre-conception care, elderly care, non-communicable disease prevention, dengue prevention, etc. The target population assigned to PHMs at their introduction - 3000 people (600 households) (1) has remained at the same level, without being revised based on the gradual expansion of their scope of work. The addition of new roles would have reduced their time available for maternal and childcare activities considerably. Due to increased population, the actual target populations of many PHMs around the country exceed the normative levels. These factors are considered to constrain the PHM’s worktime giving rise to task abandonment and the reduction of quality of care.

Many stakeholders are of the view that full time equivalents of existing PHMs cadre in the primary health care (PHC) system is not adequate for performing all the tasks assigned to them. To date, a systematic assessment of workload-based staffing needs of PHMS with reference to their traditional and newly emerging roles has not been carried out. Thus, the objective of this study was to assess the current workload of field PHMs and to estimate their WISN-based staffing needs in the preventive care system in Sri Lanka.

Methods

This study followed a Workload Indicator Staffing Needs (WISN) methodology. The WISN is a concept developed by the World Health Organization (WHO) to provide a systematic framework to estimate staffing requirements based on the burden of work. The WISN method determines how many health workers are required to cope with the workload of a given health package. The workload is defined after applying activity time standards for each workload component (intervention) on the total number of recipients. Finally, the number of full-time equivalents (FTE) of personnel required for the workload is determined (2).

This WISN study was conducted using the following standard stepwise protocol recommended for such studies.

1. Identification of the scope of work and workload components (intervention package) of the PHMs under different program areas
2. Determination of the total workload
3. Defining the activity standards for interventions and FTE
4. Assessing the available worktime
5. Calculation of the WISN using WISN formula and software

The scope of work of PHMs and workload components

The scope of work, types and numbers of different types of workload components (i.e. interventions) implemented by the PHMs were determined through a desk review and a consultative process. The maternal and new-born care package, other operational guidelines and circulars related to the intervention packages of different preventive care programs (3) were perused to prepare a list of interventions and related operational guidelines.
When defining workload components, broader activities were split into distinct steps, so that their timing can be better assessed. For example, in defining an intervention such as “providing services for a pregnant woman in the antenatal clinic”, the service activities were disaggregated as documentation, taking anthropometric measurements, conducting tests, assisting medical examination, giving tetanus injections, and issuing supplies and further instructions.

A consultative workshop was carried out to further refine the list of interventions and operational guidelines documented during the desk review. A group of MOHs, PHNS, and PHMs participated in this workshop. A list of activities and guidelines prepared were given to participants for the review. They were requested to find out whether any activities are missing, and the guidelines are compatible. Around 37 workload components were identified to be implemented by PHMs during these procedures.

Determination of the total workload

Workload is defined as the total number of various interventions to be implemented by PHMs around the country, annually assuming universal coverage (100%). One Health Tool (OHT) Software (4) was used to assess the annual number of interventions that were based on the respective target populations, population in need and service coverages. We identified the target population and population in need (the percentage of target population eligible for the intervention) for each of the interventions defined in this study based on program guidelines and set the service coverages at 100% to reflect universal coverage. For example, to estimate the number of vaccination visits to be attended by PHMs for under 5 children in the country, we have used the “number of infants surviving the first month”, which is generated within OHT based on the country statistics as the target population. The population in need was stipulated as 900% as 9 injection visits are included in the National Immunization Schedule for under 5 children. The coverage was assumed to be 100%. The OHT was used to calculate the annual number of immunization visits by multiplying these parameters. Annual numbers of all types if interventions were calculated in the OHT using appropriate parameters. The final sum of all such interventions was considered as the national workload to be covered by PHMs.

Defining the activity standards for interventions and supporting activities

Activity standard is the time necessary for a well-trained, skilled and motivated PHM to perform a direct patient-oriented intervention to the professional standards in a local field setting. In addition, the time required for support activities and additional activities were determined. Support activities mean the activities conducted by all the PHMs that support the efficient program functions. Number of such activities are not directly based on the number of recipients. For example, one-hour office time used for record keeping, which is used by all PHMs can be considered as a support activity. Additional activities are also activities that are having a facilitative function to service provision but performed by only a selected number of PHMs. For example, clinic preparation was considered an additional activity as it was only performed by the PHMs responsible for a clinic.

Activity standards i.e. the average time required for conducting all types of workload components determined during the previous steps, were assessed using a time motion study. In the time motion study, we observed the performance times of 277 PHMs who were selected using a multi-stage random cluster sampling method, from 16 MOH areas selected from four provincial health directorates in Sri Lanka (5). The parameters used for sample size calculation included the expected population standard deviation of 3 minutes (considering the range of 12 minutes of activity time based on the practical experience of stakeholders), t-distribution, total PHM population size of 6000 and a design effect of 2.

Time taken to perform all interventions by the PHMs was observed by the supervising staff. The performing of interventions was preceded by a brief explanation of the study objectives and on the standard protocols of each intervention by
supervising officers. Average of the performing time was used as the parameter for calculating the standard workload.

Assessing available work time

Available work time was assessed by deducting leave and training days from the annual working time of the PHMs. PHMs are having 7 hours work per day. Half of the casual, vacation leave and annual public holidays were considered as non-working time. Another 2 days per month were excluded as training and monthly conference days. After adjusting for these, 213 days were found to be available as the annual available work time of a PHM.

Use of WISN software to assess the staffing needs

The WISN Software was used to calculate the standard workload of direct patient-oriented service interventions, support and additional activities, and staffing requirements. A standard workload is the number of interventions a single health worker can perform within a year, provided she is only implementing that intervention. The data input required for these calculations included: available working time, annual number of interventions and service standards (average time required) for each intervention.

Data analysis

Once these inputs are made, the WISN calculates the standard workload of the intervention. The staffing requirements (full time equivalents-FTE) to perform each of the intervention are calculated by dividing the annual number of interventions to be carried out by the standard workload. The sum of this staffing requirements (for each activity) has to be further adjusted to the staff FTE requirements related to supporting activities and additional activities. WISN calculates the support FTE based on the percentage of total work time available per PHM. This is used for the support activities, which is also known as the Category Allowance Factor (CAF). The FTE calculated for interventions is inflated by a factor of CAF to get the number of PHM FTEs required for service interventions and supporting activities. The FTE required for additional FTE are calculated as additional FTEs required for attending to additional activities. This is also known as Individual Allowance Factor (IAF). The final total staff requirements were calculated by adding IAF to the PHM FTEs required for service interventions and supporting activities. Calculation of the PHM WISN (FTE) can be summarized as follows:

\[
\text{PHM WISN (FTE)} = \{(\text{FTE required to perform service interventions}) \times \text{CAF}\} + \text{IAF}
\]

Results

The workload of PHMs based on existing guidelines

Figure 1 presents the percentage distribution of PHMs required for performing various interventions related to maternal and new-born care, childcare (child development and other early childcare interventions), nutrition, Immunization, other childcare, family planning, well women care and pre-marital care program areas. These values were derived by finding out the FTE required for performing all the interventions belonging to different program areas and comparing their relative sizes. However, these time requirements do not include supporting and additional activity times.

The analysis of time requirements of various program related interventions indicated that the major share of PHMs' time is utilized by maternal and new-born
(45%) and childcare programs (45%). Exclusively, nutrition activities conducted in the field consumed around 7% of the FTE. Other care services i.e. family planning, well women clinic and pre-conceptional care are attributed to relatively smaller proportion of PHM time.

Staffing needs

WISN analysis found that based on the current program guidelines and assumed 100% coverage of all target populations in need, the country will be requiring 11,622 PHMs. The estimated requirement of 11,612 reflects the staff required for implementing direct patient-oriented interventions, support activities and additional activities.

As there are only 7087 field PHMs in the system, this gives rise to a PHM staff gap of 4525 in relation to the work demand created by the existing programs. The WISN ratio, which is the ratio of existing staff to calculated staff requirement will be around 0.61, indicating a fairly significant staff gap at national level.

Table 1 presents the WISNs by provinces in Sri Lanka. The analysis shows that Western Province is having the largest staffing shortages compared to other provinces. The WISN ratio of Western Province is reported as 0.4, indicating that the province has only 40% of its estimated requirement. The national average of WISN is 0.61, while the Eastern and Uva Provinces seem to have around 80% of their required PHM cadre based on the estimated requirement.

Table 1: Workload indicator staffing needs by provinces

<table>
<thead>
<tr>
<th>Province</th>
<th>Calculated PHM requirement</th>
<th>WISN ratio</th>
<th>Number needed to be newly employed to meet the demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western</td>
<td>3267</td>
<td>0.40</td>
<td>1954</td>
</tr>
<tr>
<td>Central</td>
<td>1475</td>
<td>0.72</td>
<td>413</td>
</tr>
<tr>
<td>Southern</td>
<td>1414</td>
<td>0.62</td>
<td>531</td>
</tr>
<tr>
<td>North Western</td>
<td>1358</td>
<td>0.55</td>
<td>606</td>
</tr>
<tr>
<td>North Central</td>
<td>734</td>
<td>0.66</td>
<td>250</td>
</tr>
<tr>
<td>Northern</td>
<td>610</td>
<td>0.82</td>
<td>107</td>
</tr>
<tr>
<td>Eastern</td>
<td>923</td>
<td>0.85</td>
<td>135</td>
</tr>
<tr>
<td>Uva</td>
<td>735</td>
<td>0.82</td>
<td>131</td>
</tr>
<tr>
<td>Sabaragamuwa</td>
<td>1096</td>
<td>0.64</td>
<td>398</td>
</tr>
<tr>
<td>National</td>
<td>11612</td>
<td>0.61</td>
<td>4525</td>
</tr>
</tbody>
</table>

PHM population ratio based on the calculated requirements

The current national norms for PHM employment require one PHM per 3000 population. However, findings of this study show that at least one PHM is required per 1878 population (21,803,000/11,612) to meet the current service demands.

The total training duration of PHMs is 18 months in Sri Lanka. Basic training of one-year duration is carried out at the Nursing Training schools situated in all provinces of the country. Considering all training schools, the maximum total training capacity is about 800 per batch (6). However, the production of PHM has been around 400 per year over the last six years (7). Even if we totally disregard the retirement and required number in the short run is a serious concern. On the other hand, with the existing number of field PHMs (n=7087), it would be a near- impossible task to provide the services expected from them.

Discussion

Sri Lanka needs to increase the number of PHMs by 64% to meet the current needs. Unfortunately, whether the current health system is able to train the
attrition, it would still take around 11 years to produce the number needed to satisfy the current service needs.

The main limiting factor for the reduced intake of trainees is lack of qualified applicants. At present, to be selected to follow the PHMs course, the candidate should be aged 18-30 years at the time of commencement of the training, all candidates should be unmarried females with a minimum height of 4 feet and 10 inches. They should have passed GCE Advance level Examination in Bio Science Stream, with minimum of 3 simples passes. Candidates should obtain four credit passes and pass in six subjects including English at the GCE Ordinary Level examination in not more than 2 sittings.

It is timely for authorities to change the entry requirements for PHMs, in order to increase the intake of PHMs. The Ministry of Health should take steps to train at least 1000 PHM per year for a foreseeable period until the target amount is met. In order to achieve this objective, the training facility should be expanded, and the recruitment criteria changed. One possible approach would be to select from any stream at GCE Advanced Level examination. In the recent past, this approach had been adopted for certain districts/provinces in an ad hoc manner, through cabinet papers.

Recruitment of applicants from any GCE Advanced Level stream should be expanded to the entire country and continued as a policy. The Ministry of Health is currently discussing this issue with the Public Service Commission in order to change the scheme of requirement (SOR). However, the science stream students may be given first preference.

Conclusions and Recommendations

Over the years, PHMs had been considered as the backbone of the enriched primary care system of the country. However, at present there is a dearth of field PHMs in Sri Lanka. Current service requirement is one PHM for 1878 population. Hence, the country needs to have around 4500 more field PHMs. Therefore, immediate steps should be taken to increase the number of field PHMs in the country in order to provide an optimum primary health care service.

Public Health Implications

This study describes a scientific workload analysis related to field public health midwives (PHMs). It highlights the number of PHMs needed for the country and the current shortage. This would be an eye opener to health planners to explore all possibilities of training more PHMs.

Author Declarations

Competing interests: The authors declare that they have no competing interests.

Ethics approval and consent to participate: Ethical clearance was obtained from the National Institute of Health Sciences (NIHS), Kalutara

Funding: Self-funded

Acknowledgements: None

Author contributions: NIT- Study design, conducting consultative meetings and work studies, WISN analysis; MDKDeS- Planning of the study, WISN analysis, manuscript checking; PK- Manuscript writing and checking; MSR- Study design, manuscript writing and editing.

References

